If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-100x+64=0
a = 25; b = -100; c = +64;
Δ = b2-4ac
Δ = -1002-4·25·64
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-60}{2*25}=\frac{40}{50} =4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+60}{2*25}=\frac{160}{50} =3+1/5 $
| 14n=378 | | -28m=504 | | t+183=527 | | 906=u+75 | | 729=27h | | 5x-10÷7=-5 | | 2x+2x+24=90 | | X/6+10=1/4-2x | | 1/16=2^3x-10 | | -12x+50=-9x-25 | | v+58=88 | | 3.3(x+4)=0 | | h+19=85 | | 47=d-6 | | 46=d-5 | | 0=25x^2-1000x-1000 | | 19+5x=44 | | 6=2(x-3)= | | 9x-6=-3(x=2)-24 | | 4x2=9x-2 | | -4a^2+15a+44=0 | | 4x2-20x=-24 | | 3a+4=2a-10+15 | | 28=−4(3r+5) | | -4a^2+15+44=0 | | (x/6)=(-7/13) | | 9c-4–5c=28 | | 9c-4—5c=28 | | -7b+3=-4b+5-2b | | 15x=480 | | 3a+4=2(a-5)=15 | | 48=96t-16t2 |